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Abstract. The present paper constructs a unified and concise theory of liquidity
measure in modern security markets. The market conditions used in our theory
simply focus on the best quotations and their depths, which are both easily available
in a fast and electronic security market. Two liquidity measures are then defined
to capture the four liquidity dimensions, viz., the width, depth, immediacy, and
resiliency. In general, a pure liquidity measure can reflect the width, immediacy,
and resiliency in certain functional forms, while a proper liquidity measure depends
on all the four liquidity dimensions, and sometimes it is separable in its pure
quotation dimension and depth dimension.

1. Introduction

Liquidity is a quite important concept in both theoretical and empirical studies of
modern financial markets, and its characterization is usually thought of as a basic
index for market quality. Typically, a liquid market is characterized by a number
of attributes which have been commonly accepted by researchers and analysts. For
example, Demsetz (1968) associated liquidity with “the cost of making transactions
without delay”, in other words, the immediacy. Black (1971) described a liquid
market by a combination of its facets, that is, a continuous market (in more recent
words, trading on the market being immediate), and an efficient market which can
furthermore be recognized as that the bid-ask spread is small, the market depth is
substantial, and the quotation is resilient. Kyle (1985) referred to three transactional
properties of a market, that is, the tightness, depth, and resiliency. Similarly, Bern-
stein (1987) and also Schwartz and Francioni (2004, Chapter 3) focused on the depth,
breadth (or tightness), and resiliency of a market. Massimb and Phelps (1994) refers
to such market abilities as the immediacy and resiliency. More recently, Harris (2003,
Chapter 19) proposed four liquidity dimensions, viz., the immediacy, width, depth,
and resiliency. That being all said, there does not exist a unified formal definition
of liquidity. As far as it is concerned, the very essence of liquidity should be related
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to the transaction cost, or more precisely, the cost of immediate execution. Clearly,
a higher cost of immediate execution would lead to a more illiquid (or inversely
speaking, less liquid) market.

Because of lacking a unified formal definition, liquidity measures adopted in finan-
cial studies and analytical activities are very diverse, which partly depend on market
structures, say highly active markets like equity or security markets, or inactive ones
like the bond market. In a highly active security market, the liquidity measure is
more easily constructed based on trading activities on the market. There are a lot
of such liquidity proxies, for example, the parameter λ of Kyle (1985) that relies on
the price impact of trading, the illiquidity ratio ILLIQ of Amihud (2002) that uses
the absolute return and trading volume to give the price impact of order flow, and
the Amivest measure proposed by Amivest Capital Management, which as a liquid-
ity ratio is very similar to ILLIQ. These above liquidity measures1 all show that a
higher price impact implies a lower liquidity state. With regards the not-so-active
bond market, turnover is accepted as an implicit measure of liquidity state, for ex-
ample, the latent liquidity measure proposed by Mahanti et al. (2008) does not use
any transaction data which are very sparse in that market, but be just calculated
from the turnover of bond investors.

From a different perspective, the following three categories of liquidity measure
might be suggested to show more clearly its diversity:

(i) measures based on the nature of liquidity, viz., the transaction cost,
(ii) measures constructed out of market conditions,

(iii) measures depending on cause-and-effect empirical analysis.

We might very briefly demonstrate some examples. The effective spread, the quoted
spread, the market depth, and the probability of informed trading clearly belong to
category (ii). The price impact of trading or order flow as was mentioned above
is a popular proxy in category (iii). Since transaction costs consist of explicit and
implicit parts, and it is hard to catch implicit execution costs, liquidity measures in
category (i) would frequently have their operational meanings conveyed by these in
category (ii) or (iii).

In this study, we plan to propose a general mathematical definition of liquidity
measure, so that most practical measures would become special cases under our
definition. It could thus help lay some rigorous foundations for the notion of liquidity,
and place it in a more precise analytic framework.

The present paper is organized as follows. Section 2 introduces the structure of a
modern security market, in which the order book is characterized two-dimensionally

1Schwartz and Francioni (2004, Chapter 3) argued that the (il)liquidity ratio is in effect a common
misconception, as trading is not only triggered by idiosyncratic factors, but also information changes
which in a sense are linked with the market efficiency.
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by the quotation and the depth. Two concepts, the market state and the shape
function, are formally developed in their abstract forms, which would be useful for
the pure liquidity measure in Section 3 and the proper liquidity measure in Section
4. Section 2 also discusses in detail the liquidity state, and describes the reasoning
procedure for reducing its determinant to the key information on best quotations
and volumes standing there. Section 3 and 4 comprise the most significant parts of
this paper, in which two liquidity measures, pure and proper, are formally defined.
The last section concludes our investigations.

2. Market Structure

We first introduce the market structure of a generic modern security market, which
is typically order-driven. Let the best bid, best ask, bid-ask spread, and midprice on
the market be b, a, s, and m, respectively. We can directly write

s = a− b, m = (b+ a)/2.

Let (b, a), or more concisely w, denote the bid-ask pair. Note that s ≥ s, a ≤ a,
and b ≥ 0, where s > 0 is the lower bound of the bid-ask spread, and a is the upper
bound of the ask, so the bid-ask domain can be expressed as

W = {(b, a) ∈ R2 : a− b ≥ s, a ≤ a, and b ≥ 0},
which admits of a geometric interpretation, viz., W is a triangle with vertices (0, s),
(0, a), and (a− s, a) in the w-plane (see Fig. 1).
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Define the spread function s : W → R+, and the midprice function m : W → R+,
such that for all w = (b, a)

s(w) = a− b, m(w) = (b+ a)/2.

More essential information on the market is effectively carried by its functioning
order book, which includes dispersed quotes on both bid and ask sides, and the
aggregated trading depth at each trading commitment. As we have defined, the bid
and ask centered on the order book are b and a, respectively. Suppose all the other
less attractive bid quotations on the bid side are b1, b2, . . . , and all the less attractive
ask quotations on the ask side are a1, a2, . . . , so that they are discretely distributed
over [0, a] as follows:

0 ≤ · · · < b2 < b1 < b < a < a1 < a2 < · · · ≤ a.

Any quote existing in the order book as a trading commitment should be associated
with a nonzero trading depth, and usually the trading depth varies across the whole
book, simply as trading volumes (or shares) at different quotes are frequently un-
equal. At any time, the order book should then have a certain distribution of shares,
which can be completely determined by its quote dispersion, that’s to say, the trad-
ing depth is actually a function in the quote. And after some trading arrangements
executed by the market, the original distribution would be updated accordingly, and
very likely with some additional perturbation coming from contagious noise trading
arrangements.

Let q denote a generic quote existing in the order book, then we should see q ∈
[0, a]. Notice that the nonempty open interval (b, a) is never available for a market
order, because there are no shares at all. Let β, α, and σ be the state that q ∈ [0, b],
q ∈ [a, a], and q ∈ (b, a), respectively. Let P = [0, a], then it can be partitioned into

Pβ = [0, b], Pα = [a, a], Pσ = (b, a).

Evidently, P = Pβ ∪ Pα ∪ Pσ, in which Pβ, Pα, and Pσ are pairwise disjoint (see
Fig. 2).

0 b2 b1 b a a1 a2 a

Pβ Pσ Pα

Fig. 2

Definition 1. A function f : P → R+ is called a shape function, if f(q) = 0 for all
q ∈ Pσ, and f(q) 6= 0 for all q ∈ Pβ ∪ Pα.



A THEORY OF LIQUIDITY MEASURE IN MODERN SECURITY MARKETS 5

Note that a specific market condition now can be described by the dispersed quotes
and the shape function of the order book. By separating these two aspects of market
condition, we would propose two distinct, but closely connected, approaches to look
into its liquidity state. Concretely, we first only consider the quote dispersion, so
that the attained liquidity measure does not cover the depth dimension, but only
cover the immediacy, width, and resiliency dimensions; we next take account of both
aspects of market condition, and thus the new liquidity measure should be more
comprehensive to reflect all the four dimensions.

As we have so far clearly defined, at any time the quote dispersion on the order
book can be represented by a finite long-dimensional tuple

(. . . , b2, b1, b, a, a1, a2, . . . ),

and accordingly, there should be a deterministic shape function f(q), such that
f(q) > 0 for all q appearing in the above tuple. In an over-generalized sense, the liq-
uidity state of an order book should be determined by all the quotes with a nonzero
depth. But if one realizes that the bid-ask pair (b, a) already carries enough infor-
mation on the market, as the quote dispersion on the bid and ask sides are both
statistically related to the bid-ask spread (see for example, Biais, Hillion, and Spatt
(1995)), then a function of bid-ask pair should be a quite reasonable treatment of
liquidity measure.

In the next sections, we shall call a measure of liquidity on the width, immediacy,
and resiliency dimensions a pure liquidity measure, and call a measure of liquidity on
all the four dimensions, viz., the width, immediacy, resiliency, and depth, a proper
liquidity measure.

3. Pure Measure

Definition 2. ρ : W → [0, 1] is a pure liquidity measure, if there exist ψ : W → R
and φ : R→ [0, 1] such that ρ = φ ◦ ψ, for φ inconstant and ψ nondegenerate.

In other words, if ρ is a pure liquidity measure, then there should be a family of
curves on W defined by some ψ, such that any bid-ask pair on a same curve in the
family must have a same liquidity state determined by φ = ρ ◦ ψ−1.

Example 1. Let ψ(w) = s(w). Recall that s(w) = a − b for all w = (b, a), so
s(w) ∈ [s, a] for all w ∈ W . Notice that the bid-ask spread s is usually considered
as an absolute index for the width aspect of the order book, thus we might use its
normalized value to represent the tightness, viz., (a− s)/(a− s), which then linearly
varies from 1 (with a spread s) to 0 (with a spread a).

The immediacy aspect of the order book is actually an alternative perception to
its capacity for market orders, which should be negatively related to the log-scaled
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spread, as was shown by Wang (2013), thus we assume that the immediacy for a
spread s could also be represented by a normalized value, (log a−log s)/(log a−log s).

With regards the resiliency aspect of the order book, we rely on the multiplica-
tion of tightness and immediacy to generate a representation for such a liquidity
dimension. Consequently, the function φ : [s, a]→ [0, 1] is now defined to be

φ(s) =
(a− s)(log a− log s)

(a− s)(log a− log s)
, (1)

and thus we obtain a pure liquidity measure ρ that is constructed by φ ◦ ψ,

ρ(w) =

(
a− s(w)

)(
log a− log s(w)

)
(a− s)(log a− log s)

. (2)

Set a/s = r and s/s = sd, so sd ∈ [1, r]. Since a � s, we have r � 1, and hence
r − 1 ≈ r. Then (1) can be rewritten as a function in sd,

φ(sd) ≈
(

1− sd
r

)(
1− log sd

log r

)
= 1− sd

r
− log sd

log r
+
sd log sd
r log r

. (1′)

Let’s redefine ψ(w) = sd(w) = s(w)/s, then the pure liquidity measure expressed by
(2) has a finer expression,

ρ(w) = 1− sd(w)

r
− log sd(w)

log r
+
sd(w) log sd(w)

r log r
. (2′)

And we should see more clearly the roles of sd(w), log sd(w), and their multiplica-
tion respectively for the tightness, immediacy, and resiliency dimension in the pure
liquidity measure ρ(w). Note that −sd and − log sd are both decreasing with sd, while
sd log sd is increasing with sd so that it can balance against the former decreasing
rates.

Example 2. Let ψ(w) = sr(w) = s(w)
2m(w)

. At any w = (b, a), we have the spread

s = a− b, the midprice m = (b+ a)/2, and the relative spread sr,

sr =
s

2m
=
a− b
a+ b

.

Evidently, sr ∈ [s/(2a− s), 1] for all w ∈ W , and approximately stating, it is nearly
(0, 1] simply as a� s.

Let φ(sr) = −esr log sr, where e ≈ 2.718. Note that −sr log sr has the maximum
of e−1 and minimum of 0 in the domain (0, 1], so φ(sr) ∈ [0, 1] for all sr. In this
situation, we have another pure liquidity measure %(w) = φ

(
sr(w)

)
, and for all

w = (b, a)

%(w) = −ea− b
a+ b

log
(a− b
a+ b

)
. (3)
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So %(w) achieves the maximum of 1, when sr(w) = e−1, or b/a = (e− 1)/(e + 1),
which is roughly 0.462. It might be noticed that

e− 1

e+ 1
=

sinh(1/2)

cosh(1/2)
= tanh(1/2),

where “cosh” and “sinh” are hyperbolic cosine and sine, respectively. We can thus
state, in a much conciser way, that %(w) has its maximum if b/a = tanh(1/2).2 The
following Fig. 3 shows some geometric properties of the optimal liquidity states on
the (b, a)-plane, in which the angle ϑ = arctan e−1 ≈ 0.353, or about 20.20◦ in degree
measure.
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Fig. 3

4. Proper Measure

Let δf denote the market volume in a time when the shape function is f(q), with
f(q) > 0 for all q ∈ Pβ ∪ Pα, then we have

δf =

∫
P

f(q) dq =
∑
f(q)>0

f(q). (4)

2As a general conjecture, there must be some real function for any pure liquidity measure, say
$, such that the so-measured liquidity would be maximized if b/a = $(1/2).
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If, instead of being plainly aggregated, the trading volumes standing on the market
are consolidated in a nonlinear way, then there is a weighting function3 π : P → [0, 1],
such that the market volume is now expressed as

δf =

∫
P

π(q)f(q) dq =
∑
f(q)>0

π(q)f(q). (4′)

As a rather particular case, suppose, for some regulation reason, that π(q) = 0 if
q 6= b, a, then the weighted market volume only covers the depths at the two best
quotes, and it is equal to

π(b)f(b) + π(a)f(a).

Definition 3. ` : W × R+ → [0, 1] is a proper liquidity measure, if there exist a
function χ : [0, 1]×R+ → [0, 1] and some pure liquidity measure ρ : W → [0, 1], such
that for all w ∈ W and δf ∈ R+

`(w, δf ) = χ
(
ρ(w), δf

)
. (5)

It clearly suggests that a proper liquidity measure essentially reflects its intrinsic
pure liquidity state as well as the market depth. Very often, the function χ should
increase with both ρ(w) and δf , and the corresponding ` should satisfy

lim
ρ(w) ↓ 0

`(w, δf ) = 0, lim
δf ↓ 0

`(w, δf ) = 0.

So the pure liquidity state and the depth are both critical elements in a proper
liquidity measure, because the liquidity as is properly measured would vanish when
either of them goes to zero.

Example 3. Suppose χ
(
ρ(w), δf

)
is separable in such a way that

`(w, δf ) = ρ(w)
(
1− exp(−γδf )

)
, (6)

where γ > 0, and ρ(w) is a pure liquidity measure.
In this situation, the proper liquidity maximization can be processed as two sep-

arate targets, viz., the maximization of pure liquidity and of market depth. Notice
that when γδf ≥ 6.908, one has

1− exp
(
−γδf

)
> 0.999,

thus the market depth would be very closely maximized if δf = 6.908/γ. And the
pure liquidity maximization would be achieved, if w is located on a certain curve

3It might illustrate the fact that some trading volumes are actually hidden to traders, or that
trading volumes at different quotes should have differential levels of significance.



A THEORY OF LIQUIDITY MEASURE IN MODERN SECURITY MARKETS 9

bounded by W on the w-plane. For instance, assume ρ(w) = s(w)
2m(w)

as defined by (3),

then such a curve appears to be the following line segment bounded by W ,

{w ∈ W : b− tanh(1/2)a = 0}.

In case the shape function f(q) is stable in a time period T , and δf is calibrated
to cover only the π-weighted depths at the best quotes, then δf is actually a function
in w,

δ(w) = π(b)f(b) + π(a)f(a),

where π(b)+π(a) = 1. Clearly, δ(w) is additive in b and a due to π·f . In consequence,
the proper liquidity measure ` effective in T could be reduced to a new measure `∗

just in the bid-ask pair w, which can now be written as

`∗(w) = χ
(
ρ(w), δ(w)

)
. (7)

Once we have fixed the functions ψ(w), δ(w), and the operators φ, χ, the corre-
sponding pure and proper measures ρ(w) and `∗(w) are well defined. Quotes of a
modern security market on most stock exchanges are available through some public
data aggregators, say Yahoo Finance, which provides real-time quotes for securities
on NASDAQ and NYSE, and quotes with some delay (from 10 to 30 minutes) for
securities on other exchanges in the world. Therefore, the measures can be imple-
mented by collecting the time series data on the best quotes b and a. As for the
measure `(w, δf ), more data on the volumes at the best quotes are required, which
are also available without difficulty.

It might depend on one’s attitude towards data to select `∗ or ` in practice. If one
thinks that a greater data dimension could bring on more inconsistencies, then it
would be better to employ `∗. But if one believes a higher theoretical setting could
carry less empirical meanings, ` would then be a much more suitable choice.

5. Summary

This paper constructs two correlated liquidity measures called pure liquidity mea-
sure and proper liquidity measure to propose more precise meanings for the concept
of liquidity in a mathematical way. We have presented a number of specific examples
to show how our definitions can be applied to generate some conventional liquidity
measures or proxies, which are widely adopted in financial studies and analytical
activities. Concerning some normal liquidity measures, it seems that there always
exists a set of market conditions which can hold a maximal liquidity level under a
certain market structure.

In this study, the four liquidity dimensions have been divided into two classes,
that is, the pure quotation dimension and the volume dimension. The pure quo-
tation dimension which consists of the width, immediacy, and resiliency, outlines
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the construction of the pure liquidity measure, and the volume dimension which in-
cludes the depth information, adds itself to the pure liquidity measure to produce a
proper one. Very often, the pure quotation dimension and volume dimension could
be thought of to be separable, so that the proper liquidity measure would have some
plain computing procedure to be lifted from its corresponding pure liquidity measure.
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